
Pergamon 
0021-8928(95)00081-X 

I. AppL Maths Mech,~ Vol. 59, No. 5, pp. 691--699, 1995 
Copyright @ 1996 Elsevier Science Lid 

Printed in Great Britain. All rights reserved 
0021-8928/95 $24.00+0.00 

CONTROL OF THE MOTION OF 
A CYLINDRICAL BODY IN A VISCOUS MEDIUM 

FOR OPTIMAL ENERGY CONSUMIrHONt 

D. S. Z A V A L I S H C H I N  and  S. T. Z A V A L I S H C H I N  

Ekaterinburg 

(Received 16 March 1994) 

Displacements of a cylindrical body in a viscous medium are considered, with a view to determining the optimal displacements, 
in the sense of minimum energy consumption, for a given time and distance. An Euler-Lagrange variational procedure is used 
to find the necessary optimum conditions, formulated as differential equations for local phases of the optimal motion of the 
cylinder. Using these equations it can be shown that the problem has two extremal solutions. The first corresponds to motion 
of the cylinder at constant velocity, preserving its vertical orientation. The second involves an intermediate stage during which 
the cylinder is moving ha a horizontal position. Before and after that stage the velocity of the cylinder's centre of mass undergoes 
jumps, the number of jlmaps depending on the relative elongation of the cylinder. At the initial and final times the cylinder has 
unbounded angular velocity, but its centre of mass is moving at a finite velocity. A computational experiment has shown that if 
the distance of the displacement does not exceed a certain critical value, the first extremal solution is optimal. Otherwise the 
second extremal solution is optimal. This critical value depends only on the geometry of the cylinder. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the displacements of a homogeneous cylindrical body in a viscous medium, with the upper 
point of the body's axis (henceforth referred to briefly as the engagement point) sliding along the 
horizontal. The time and distance of the displacement are given; the cylinder is oriented vertically at 
the beginning and end of the motion. Our problem is to determine how the cylinder should move 
so as to minimize the energy needed to overcome drag. Similar problems have been considered in 
studies of dynamic optimization as applied to investigating the energy aspects of underwater bipedal 
locomotion [1]. 

The mathematic.'d formulation is as follows. A cylinder moving in a viscous medium is subject to drag 
[2], which is a force applied at the centre of mass parallel to the direction of the latter's velocity of 
motion. It includes components due to friction and pressure. The total drag [2, 3] is calculated from 
the formula 

D = - C o p S W / 2  (1.1) 

where p is the density of the liquid, V is the velocity of the cylinder's centre of mass, Vis the magnitude 
of the velocity, S is the area of the projection of the cylinder onto a plane perpendicular to the vector 
V and Cz) is the drag coefficient. 

The area S is uniquely defined by the cylinder's angle of attack ¢x, i.e. the angle between a vector 
directed from the centre of mass of the cylinder to the engagement point and the vector V (the 
counterclockwise di[reetion is taken as positive). 

We will now introduce several restrictions which endow the drag with a structure which renders the 
relevant extremum ]problem amenable to analytical investigation. First, the viscous medium is assumed 
to be incompressible. Second, the cylinder moves in a volume of liquid which is either very extended 
or is enclosed withta rigid boundaries. Under these conditions Co is a function of the angle of attack 
and the Reynolds number only [3]. Optimum laws of motion for the cylinder will be sought for a range 
of Reynolds numbers in which, for a fixed incidence, the drag coefficient remains psractically constant. 
One such range is a fairly long left half-neighbourhood of the number Re = 2 x 10, provided that the 
cylinder is of sufficiently large relative elongation [3]. In the situation described CD is a function of the 
angle of attack only. 
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Under the above assumptions, the drag (1.1) is characterized, apart from a constant factor, by the 
quantity--CD(O0S(o0VV, which we will now proceed to calculate. The position of the cylinder is described 
by generalized coordinates ~ and 9 (Fig. 1). The first coordinate defines the linear displacement of the 
engagement point, and the second angular position of the cylinder. The coordinates of the centre of 
mass of the cylinder are then defined by the formulae 

x = ~ - lsintp, y = lcos~0 (1.2) 

(1.3) 

where I is the half-length of the cylinder. Differentiating (1.2) with respect to time, we obtain the 
coordinates of the velocity vector of the centre of  mass 

k = u-/o~cos~0, y = -lo~sin~0 

(1.4) 

where u is the linear velocity of the engagement point and co is the angular velocity of the cylinder. 
The area Sb of the projection of the lateral face of the cylinder onto a plane perpendicular to the 

velocity vector of the centre of mass may be calculated as the absolute value of the scalar product of 
the vectors bE and V-1V ±, where E and V± are the vectors 

E=(-s intp ,  cosg), V ± = ( - y ,  .}) 

(1.6) 

and b = 2/d is a constant, d being the diameter of the cylinder. Using (1.3) and (1.4), we obtain the 
formula 

Sb=bV-tlpl, (p = ~cos~0-/~) (1.5) 

Similarly, starting with the vectors aE and V-iV ~, where, by (1.4), E ± = (cos ~0, sin q0 and a = d2/4, 
one can calculate the area of the projection of the ends of the cylinder on the same plane 

Sa=aV-tlql, (q = a~sin~0) 

(1.7) 

Adding (1.5) and (1.6), we obtain an expression for the required area S(ot), and the drag is given by 

D = -CDp(blpl+alql)V 12 

:X 

y, 
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Fig. 1. 
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The work performed to overcome the drag over a time interval dt is equal to the scalar product of 
the vectors (1.7) ~,nd Vdt. Hence we obtain the following expression for the power 

W = Cop v 2 (bl pl +al ql) / 2 (1.8) 

where, by (1.3) 

V 2 --- ' o  2 - 2~)/tocos tp + (/~0) 2 (1.9) 

As a result we obtain the following dynamic optimization problem. 

Problem. Find f~sactions ~(t) and o~(t) that minimize the terminal functionA(tk) subject to the following 
dynamic constraints 

= Cn(tx)V2(blpl+alql), a(0)=0  

,i,=co, ,p(o)=o (1.1o) 

and boundary conditions 

~(tk) = ~k , q)(tk) = 0 (1.11) 

The angle of attack is calculated from the formula 

tx=(n/2)signtp-arctg( l~sintp ) (1.12) 
k ~ -  teocos ~0 ) 

Thus, we have to find programmes v(.) and ~(-) to vary the linear velocity of the cylinder's engagement 
point and angular velocity which, first, will solve the boundary-value problem (1.11) and, second, will 
minimize the energy consumption W(tk). 

2. DERIVATION OF THE EQUATIONS FOR THE LOCAL PHASES OF 
OPTIMAL MOTIONS OF THE CYLINDER 

In this section we will first investigate the necessary conditions for an optimum in the above dynamic 
optimization problem. We will then derive differential equations for the local phases of the optimal 
motions of the cylinder. These equations will ultimately enable us to organize computations for 
determining the optimal values of the generalized velocities ~a and c0 at any given time. 

The problem formulated in Section 1 is solved by using an Euler-Lagrange variational procedure 
[3], namely, we set up the Hamiltonian 

H = )~oCoV 2 (blpl+alql)+ ~,l~+ )~2to (2.1) 

and the conjugate system 

-~.o=OH/OA=O, ~,o(tk)=OOlOA(tk) 
-~.l=OH/O~=O, ~q(tk)=O~lO~(tk) 

-~,2 = OH / Otp, L2 ( tk ) = OdP / ~p( t k) 

(2.2) 

The functional in these equations is 

O= A(tk )+ Vl (~(tk )--~k )+ V2tP(tk ) (2.3) 

where vl and v2 are constants chosen so as to ensure that the boundary conditions (1.11) are satisfied. 
Analysis of the conjugate system (2.2) and the functional (2.3) shows that ~ = 1, ~1 = const. Hence 

the Euler-Lagrange equations are 
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3H 0A OH 0/i. + ~'2 = 0 (2.4) 
a~-av~-z,J =0, o---tTo=oto 

where A, as before, is the right-hand side of Eq. (1.10). 
System (2.4) enables us to determine the Lagrange multipliers kl and k2. Substituting the expression 

for ~,1 into the second equation of the conjugate system (2.2) we obtain the integral 

0k / 3x) = const = C I (2.5) 

Since the Hamiltonian maintains a constant value along optimal trajectories, there is a second integral: 
H = (73. Developing this equality in accordance with (2.4), we express the second integral as follows: 

H = A -  vaA / ao-oaA / ato= c3 (2.6) 

Euler's theorem for homogeneous functions implies the formula 

x)aA / 3x)+~OA / ao~ = 3A 

from which it follows, by (2.6), that H = -2A = C3. Thus, the power in the optimal displacements is a 
constant: A = C2 = -C3/2. 

Combining this fact with Eq. (2.5), we can establish the truth of the following. 

Theorem. In optimal displacements of the cylinder, the power and its derivative with respect to the 
velocity of the engagement point keep constant values 

3A / 3~ = C~, a = C 2 (2.7) 

Based on formulae (1.5), (1.6), (1.9), (1.10) and (1.12), this system determines the optimal generalized 
velocities as implicit functions of the cylinder's angular position: ~ = f(9, C1, C2), co = g(~p, C1, C2). 
Thus, the optimal evolution of the cylinder must be governed by the system of equations 

~= f(9,C,,C2),  (p=g(t.p,C,,C 2) (2.8) 

The construction of an optimal phase trajectory (~(t), ~(t), ~0(t), t0(t)) of the cylinder involves 
difficulties, partly computational in nature. One difficulty is obvious: the constants C1 and C2 are 
unknown, and their determination requires further investigation. A second difficulty is as follows: there 
is practically no hope of devising a regular procedure to solve system (2.7) for the generalized velocities, 
lacking any prior information as to the domains in which they may vary. 

Thus, it is of the utmost importance to replace the generalized velocities of the cylinder by other 
characteristics, so as to overcome the second of these difficulties. 

We shall describe one possible approach to this task. Equations (2.7) will be reduced to a form in 
which computations to determine the current optimal values of the velocities ~ and to are more conven- 
iently organized. This will be done by introducing a new angle 7, defined by the conditions 

p = V cosy, q = V siny (2.9) 

Let us express the integrals (2.7) for system (2.8) of optimal motions of the cylinder in terms of V 
and 7. To do this we will need the angle ~m defined by 

b = N cosq)m, a = N sin(pro 

The expression forA now becomes 

A = SpCDNV 3 cos(y --S(Pm ) = C 2 

(2.10) 

(2.11) 

where st, = signp, s a = signq, s = s~sa[ 
Differentiating the identity V 2 __'/~ + q2 with respect to , and using (1.5), (1.6) and the definition 

of y in (2.9), we obtain a relationship from which the derivative may be expressed as 
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OVIO~ = cos(T- ~) (2.12) 

Similarly, differentiating the identity tg T = q / p w i t h r e s p e c t t o ~ , w e  obtain 

~TIO~ =V-Isin(~ -T)  (2.13) 

Differentiation ofA,  as defined by (2.11), with respect to ~, using formulae (2.12) and (2.13), now 
yields an expression for the other integral of system (2.8) of  optimal motions of the cylinder 

0t), I ~o = spCoNV 2 (2 cos(q) - StPm ) + cos(27 - q) - Sq)m )) + 

+C2 V-21~sintp(dln C o I dot) = C] (2.14) 

Thus, the integrals (2.7) of  system (2.8) have been transformed to the form (2.14) and (2.11). 
We introduce the following function 

T = T(V) = C2(NCo)-nv -3 (2.15) 

In accordance with definitions (2.9) and (2.10), the integral (2.11) may be written in the form 

COS(T-- $~m) = spT(V) (2.16) 

Formula (2.16), considered as an equation in the angle T, yields the following formula 

T = Sq)m + oarccos(spT) (2.17) 

where o is a parameter  that takes the values _ 1. This formula and the equality 

2y - q) - sq) m = 2 ( y -  Sq)m) - ((p - sq) m) 

imply the relation 

cos(2T - q) - sq) m ) = (2T 2 - 1) cos(cp- S(Pm )+ 2ffSpT(l - T 2 )~  sin (¢p - sq) m ) 

which yields the following expression for the second integral (2.14) 

N ~ . dC o 4 

where 

g(T, ~0) = (2 T 2 + 1) cos(cp - s(p= )+ 2aspT(l  - T 2 )~  sin(q)- sq) = ) -  3RT  ~ 

R = spC)Cf:A(CoN) -~ / 3 

(2.19) 

= V sinT,, ff = l_tV sin(T-q)) (2.20) 
sm 9 sintp 

where, by (2.15), the magnitude of the velocity of the cylinder's centre of mass is given by the formula 
~/  _n/ _n/ _I /  

V = C ; 3 C J 3  N /3 T /3 (2.21) 

The angle T is determined from (2.17) and T is a root of  the Fundamental Equation (2.18). 

This relationship, considered as an equation in the parameter T, will henceforth be referred to as 
the Fundamental Ektuation. 

Thus, Eqs (2.8) for the optimal motion of the cylinder have been reduced to the form 



696 D.S.  Zavalishchin and S. T. Zavalishchin 

To integrate this system, using, say, Euler's method, one proceeds as follows. Given an angle 9(tk) 
and velocities 1)(tk-1), tO(tk_l), one determines the root T of the Fundamental Equation. Then, using 
formula (2.17), one computes T and, using formula (2.21), the linear velocity Vof  the centre of mass. 
Using this information, one can now determine the right-hand sides of Eqs (2.20), which give the optimal 
displacements of the cylinder. Finally, using the formulae for Euler's method, one finds the generalized 
coordinates of the cylinder, ~(tk+l) , 9(tk+l) .  

It has been rigorously established that the root of the Fundamental Equation (2.18) should be sought 
in the interval 0 ~< T ~< 1. Thus the entire problem reduces to determining the constants C1, C2 and t~. 
This will be discussed in Section 3. 

3. C O N S T R U C T I O N  OF E X T R E M A L  P H A S E  T R A J E C T O R I E S  

The first extremal programme for the displacement of a cylinder in a viscous medium. Analysis of the 
necessary optimum conditions (2.7), taking (1.10), (1.5), (1.6), (1.9) and (1.12) into account, reveals a 
simple extremal trajectory, corresponding to displacement of the cylinder with its vertical orientation 
maintained, at a constant velocity 1) = ~/tk. In that case 

C| = 3C D (• / 2)b(~ k / t k )2 

C 2 = Co(nl2)b(~ k / tk )  3 

The second extremalprogramme. A more detailed investigation of the necessary optimum conditions 
leads to the conclusion that there is another, qualitatively different, extremal, provided the given range 
of the displacement is large enough. The corresponding programme of cylinder displacement includes 
a stage in which it moves in a horizontal position. 

Numerical experiment has shown that the structure of the second extremal is the same as that of an 
extremal corresponding to the following value of the drag coefficient 

Co(a) = (Co(O)+ Co(n 12))/2 = C ° (3.1) 

provided that the cylinder is of sufficiently high relative elongation. 

This is the case, for example, for cylindrical cans with fuel rods and the decay tank in certain nuclear power 
stations. The relative elongation of such cans is 2lid = 2.4. In the specific range of Reynolds numbers indicated in 
Section 1, the drag coefficient for the cylinder is Co(r,1"2) ~- 0.69 (for motion with the vertical orientation maintained) 
and CD(0) = 0.84 (for motion in a horizontal position [3]). Consequently, the coefficient Co(a) may differ from 
the constant value C ° = 0.76 by at most 11%. These conditions ensure a structural analogy between the extremals 
as described. The advantage of the extremal corresponding to (3.1) is that it can be described by analytical means. 
That is why it will receive preference in what follows, although the results of the actual computations relate to the 
original situation. 

We thus consider the following auxiliary boundary-value problem. Consider system (2.20) when CD(a) 
= C ° as in (3.1). The velocity Vof  the centre of mass and the angle 7 are determined from (2.17) and 
(2.21), the constant C2 being replaced by C2(C°) -1. The parameter T (0 ~< T ~< 1) is a root of the 
Fundamental Equationg(T, 9) = 0 with the constant R defined by (2.19) and the constants Ci replaced 
by Ci(C°) -1, i = 1, 2. 

Note that the parameter ~ takes one of the values _ 1. 
We have to choose a, C1 and C2 so that the solution of the Cauchy problem ~(0) = 0, 9(0) = 0 for 

system (2.20) will satisfy the boundary conditions (1.11). 
Let us return to the two integrals (2.7) determined in Section 2, which in the present case have the 

form 

V 2 (blpl+alql) = C 2 

2(pp~ + qq, )(bl pl+alql) + V(svbp~ + sqaq~ ) = C I (3.2) 

At the initial instant, tp = 0. Thus, by (1.9), (1.5) and (1.6), the linear velocity of the centre of mass 
of the cylinder is such that 

V 2 _- p2 + q2 = 1)2 _ 2/0,~ +(/CO) 2 = p2 
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whence it follows that q = 0. The integrals (3.2), with (1.5) and (1.6), may now be written in the form 
b V  3 = C2, 3bV 2 = seC1. Hence the constants C1 and C2 turn out to be related by the formula 

CI = 3spb~C~ (3.3) 

Hence, in view of the notation (2.19), R = (cos tpm) 1/3. Consequently, the Fundamental Equation has 
a root T = cos ~Pm. This is possible only if 

~Sq = -1 (3.4) 

Analysis of the first and second derivatives of the function T(tp), defined implicitly by the Fundamental 
Equation (2.18), with respect to the generalized coordinate tp, yields 

s = SpSq = 1 (3.5) 

Thus, by (3.4) and (3.5), confining our attention to small angular displacements, we can write the 
Fundamental Equation as 

g(T,{p) = (2 T 2 + 1) cos(tp- ~0 m ) -  2T(1 - T 2 ))~/sin (q~- tpm ) -  3cos y3 tp, n T ~ = 0 (3.6) 

The angle ~/is ~Llculated from the formula T = (Pro - -  $p arc, cos (sp(T). 
Since ~(0) > 0, iit follows that Sq = 1, so that, by (3.5), sp = 1. Thus the formula for T becomes 

T = ~0m -- arccos T (3.7) 

Applying l'H6pital's rule to the right-hand sides of Eqs (2.20), using (2.21), (3.6) and (3.7), we conclude 
that the velocities 1~ and to are unbounded in the neighbourhood of the starting time. Nevertheless, the 
velocity of the centre of mass remains bounded. 

1 / 3  As the time increases, the angle q~ also increases, reaching the value q~p = tPm - arccos (cos Cpm) at 
a certain time. When that occurs we have T(tpp) = 1, and, for the Fundamental Equation to be solvable 
at later times as well, we must set a = 1. The parameter T(tp) then begins to decrease, reaching a certain 
minimum value; it then increases and, when the angle 2tPm is reached, becomes equal to cos q~m. At 
that point the angular velocity of the cylinder vanishes. 

We shall need the following iterative process, which involves a sequence of pairs of numbers 
{Rk, ~ }, k = 2, 3, Let R2 = -sin tpm, q~p2 = rd2 and suppose that the pairs with numbers 

[ y k  . . . . .  . 

3 , . . . ,  k have been constructed. We then define Rk+ 1 = -z(Tk) ,  where Tk is the greatest root of the 
equation 

2Txk(T) (2T  2 -1)(1-  z~(T)) ~ +--~-/= 0 

(1-T2) ~ T ~ 

in the interval [0, 1]. We have used the notation 

)~k(T) =-T~(8T 2 +1) -j (3Rk (2T 2 + 1)+ 2Tg ( I -  T2)~ (8T 2 _9R2T ~ + 1) ~ ) 

The angle %,k+1 = ~ - ~ 0 m -  a r c c o s  ~k(Tk). 
It can be verified that such g(Tk, tppk) = Og/OT(Tk, tppk) = O, k = 3 , . . . .  

< Let n be a number such that tpp, n+l 2tPm tp n As the cylinder passes through the angle 2tPm, the 
sign of the parameter st, changes, and the constant R also changes. Now s e = -1, Sq = 1, R = R~. This 
value of R is maintained until the cylinder turns through the angle tPpn. The pfframeter T increases to 
1 as the angle tp inc:reases. In the angular sector (tpgn, Cp, n-X] we have R = Rn-x, T increases to 1 as the 
angle q~ increases, aaad so on. Finally, when the cylinder passes through the angle tp,3 the constant R 
takes the value -sin tpm and at that point takes a horizontal position. 

After the cylinde:r has become horizontal, it continues to move steadily at a constant velocity ~s = 
(C2/b) 1/3. This follows from the first formula of (3.2). The constant C2 is determined from the first 
condition of (1.11), written in the form a)~ts = ~k - 2~(A), where A is the time needed for the cylinder 
to turn from vertical to horizontal, t~ = tk - 2A. 

With the elapse of time ts, the cylinder begins to resume its original, vertical position. This takes place 
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in accordance with the programme described above, but reversing the signs of the parameters o, st, and 
Sq compared with the first manoeuvre. 

The problem has no extremal solutions other than those described. It remains to ascertain under 
what conditions one or the other construction is optimal. It is clear that the possible energy gain when 
the cylinder is moving in the second extremal programme is due to the intermediate, steady-state phase 
of the motion. In this phase the drag of a cylinder of sufficiently high relative elongation reaches its 
minimum, so that, for the same power, the cylinder may move at a higher velocity. 

4. C O M P U T A T I O N A L  E X P E R I M E N T  

To answer the question posed above, a program was written to simulate the motion of the cylinder along 
an optimal phase trajectory (g°(t), 9°(t), u°(t), ~'°(t)). The results are exhibited below for initial data d = 151 cm 
and I = 182.5 era. The linear velocity of the cylinder in the first extremal program was taken as 10 cm/s. 

Let Q be the ratio of the amounts of energy expended in the second and first extremal programs. 
It has been shown that over runs of at most 2900 em the first extremal construction requires less energy. In longer 

runs, however, the second program becomes more suitable. The data are presented in the following table 

gk 2900 3240 4340 7850 
Q 1 0,9 0.7 0,5 

If the run is increased without limit, the coefficient O approaches the value aCo(O)/(bCo(gl2)) ,  which is 
proportional to the ratio of the area of an end of the cylinder to the area of the cross-section through its vertical 
axis. 

The computational experiment has shown that the ranges just indicated are independent of the velocity of the 
cylinder in the first extremal program; they depend solely on its geometry. 

In Figs 2-5, various characteristics of the cylinder are plotted against its angular position (p: the angular velocity 
t0 and linear velocity x~ of the engagement point (Fig. 2); the velocity V of the centre of mass and the angle of 
attack cx (Fig. 3); the components ~, j; of the velocity of the centre of mass (Fig. 4); and, finally, the parameter T 
and the area of the projection of the cylinder on a plane perpendicular to the velocity vector of the centre of mass 
(Fig. 5); all these plots refer to the phase of optimal motion of the cylinder from vertical to horizontal. 

The second extremal program stipulates a stage during which the cylinder is moving in a horizontal position. 
Before and after this stage, the velocity of the centre of mass of the cylinder experiences a jump three times. This 
takes place at angles 29ra, tpp3, 7t/2. The behaviour of the generalized velocities of the cylinder and its angle of attack 
is similar. At the initial and final times the angular velocity of the cylinder, as well as the linear velocity of the 
engagement point, are unbounded, but the velocity of the centre of mass remains finite. 

It is clear that in order to implement the second extremal program one must apply fairly irregular external forces 
and torques to the cylinder. Let these be, say, a horizontal force applied at the engagement point and a torque 
about the same point. Then both force and torque are unbounded at the beginning and end of the process. Three 
times before the part of the motion in the horizontal position and three times after it, the controlling torque acts 
impulsively on the cylinder, at the times 
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tl, t2, A, A + ts, A + t s + tl, A + t s + t2 (4.1) 

where the times tl and t2 are determined from the conditions (P(tl) ffi 29m, tP(t2) = 9p3. The behaviour of the force 
applied at the engagement point is similar. 

This behaviour of the controls on the cylinder determines our problem's category in the field of dynamic 
optimization: it is art irregular problem [4, 5], solvable by one of the techniques developed in [6, 7]. In addition, 
the problem is intere, sting for the fact that it provides a meaningful model in which the so-called singular manifold 
(2.20) has a discontinuous structure, explaining the presence of pulsed components of the controlling force and 
torque at the times (4.1). It is these pulsed effects that enable the phase portrait of the cylinder to remain on the 
singular manifold across the latter's discontinuities. 

Apart from the e~qperiment described, another experiment has been performed in order to determine the range 
of possible relative elongations of the cylinder in which the second extremal construction becomes optimal from 
some range ~ on. As shown, this is the case if the diameter of the cylinder does not exceed a certain quantity of 
order 6.08//n, where 2/is its length. The range ~ increases without limit as the diameter approaches this quantity. 

Finally, we presenlt some data on the number of jumps in the velocity of the centre of mass of the cylinder when 
confined to the hofiz(mtal position, depending on the relative elongation 2//d. The  numerical experiment was carded 
out for a cylinder of length 2 / =  365 cm. The existence has been established of constants d2 = 239.5 cm, d3 = 124 
era, d4 -~ 100 c m , . . . ,  such that the number of these jumps is two if d2 < d, three if d 3 < d < dz, four if d4 < d < 
d3, etc. 

The  research repor ted  here  was carried out  with the financial support  o f  the Russian Founda t ion  for  
Basic Research  (921-013-16326). 
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